computing wiener and hyper–wiener indices of unitary cayley graphs

Authors

a. loghman

abstract

the unitary cayley graph xn has vertex set zn = {0, 1,…, n-1} and vertices u and v areadjacent, if gcd(uv, n) = 1. in [a. ilić, the energy of unitary cayley graphs, linear algebraappl. 431 (2009) 1881–1889], the energy of unitary cayley graphs is computed. in this paperthe wiener and hyperwiener index of xn is computed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Computing Wiener and hyper–Wiener indices of unitary Cayley graphs

The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.

full text

Ijmc Computing Wiener and Hyper–wiener Indices of Unitary Cayley Graphs

Let H be a connected graph with vertex and edge sets V(H) and E(H), respectively. As usual, the distance between the vertices u and v of H is denoted by d(u,v) and it is defined as the number of edges in a minimal path connecting the vertices u and v. A topological index is a real number related to a graph. It must be a structural invariant, i.e., it preserves by every graph automorphisms. Ther...

full text

Computing PI and Hyper–Wiener Indices of Corona Product of some Graphs

Let G and H be two graphs. The corona product G o H is obtained by taking one copy of G and |V(G)| copies of H; and by joining each vertex of the i-th copy of H to the i-th vertex of G, i = 1, 2, …, |V(G)|. In this paper, we compute PI and hyper–Wiener indices of the corona product of graphs.

full text

On Unitary Cayley Graphs

AssrRAcr. We deal with a family of undirected Cayley graphs X. which are unions of disjoint Hamilton cycles, and some of their properties, where rz runs over the positive integers. It is proved that X-is a bipartite graph when n is even. If n is an odd number, we count the number of different colored triangles in Xn.

full text

COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q

A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.

full text

ON THE REFINEMENT OF THE UNIT AND UNITARY CAYLEY GRAPHS OF RINGS

Let $R$ be a ring (not necessarily commutative) with nonzero identity. We define $Gamma(R)$ to be the graph with vertex set $R$ in which two distinct vertices $x$ and $y$ are adjacent if and only if there exist unit elements $u,v$ of $R$ such that $x+uyv$ is a unit of $R$. In this paper, basic properties of $Gamma(R)$ are studied. We investigate connectivity and the girth of $Gamma(R)$, where $...

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of mathematical chemistry

Publisher: university of kashan

ISSN 2228-6489

volume 3

issue 2 2012

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023